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WITH ANBWITHOUT HEAT SOURC!ESIN CBWNEE3 WITH

CONSTANT WU TEMPERATURES

By Simon Ostrach

The natural-convectionphenomenon is analyzed @ it is found that
the flow and heat transfer, in general, not only are functions of the
I’randtland Grashof nunibersbut also depend on a new dimensionless
parameter. lY this paramster is not negligibly small, the compression
work and frictional heathg may appreciably affect this mode of heat
transfer.

Consideration is given to the particular case of fully developed
natural-convection flow of fluids with and without heat sources between
two parallel long plane surfaces the temperatures of which are main-
tained constant but not necessarily equal. These plates are oriented
in the direction parallel to the generating Ixx3yforce. Solution of
this problem y3.eldsdetailed information on the velocity and tempera-
ture distributions and heat transfer to be expected for such flows
in tall narrow channels, on the effect of heat sources in the fluid, ‘
and on the effect of frictional heating on the prooess. It iS found
that the frictional heating and the heat sources increase the velocities
and temperatures tithin the channel formed by the two surfaces.
Increasing the ratio of the two wall-temperature differences (wall
minus outside ambient) also leads to’sim.il.arresults.

IC?TROBUCTION

Flows which are generated entirely by the action of body forces
(such as the gravitational force) on fluids with density variations

. due to heating are refereed to as-natural- or free-convection flows.
It has previously been pointed .ou& (see reference 1, for example) that
natural-convectionflows are of practical importance in aeronautics.
The use of natural-convection flows in hollow passages in turbine rotor
blades for cooling is one of the applications “ofthis phenmnenon in.
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2 NACA TN 2863

practice. With the advent of the possibility of nuclear power, the
natural-convection process Imoomes of even greater’importance, because
this mode of heat transfer appears in some of the many schemes for
extracting the heat energy fram an atomic pile. The use of liquid.
metals (in which heat may also be generated by heat sources) as the
heat-transfer fluid for suoh applications is being considered beoause
of theti suitable behavior at the high-temperature levels that would
be associated with atomic power.

To date the theoretical investigation of natural-convection heat
o
+

transfer have been restricted to such simple configurations as the :’
single vertioal flat plate and the horizontal cyl~ere Further,
the fluid considered in these investigations is usually air. The
work done on more complex configurations, such as the natural-
convection flow in channela or tubes, is for the most part experimental
or semiempirical. An etiensive experhental setiempirical study was
performed by Elenbaas, who h reference 2 analyzed in an approximate
manner the natural-convectionheat transfer between two parallel plates
heated to the same temperature and also made measurements for the ease
of the flow of air. In reference 3 semiempirioal Nusselt numbers are
compared for experiments of air flow in vertical tubes of different
cross section, and in reference 4 (pri.mariiya summary paper)
functional equations for the Nusselt number are obtained by means of
similarity considerations (that is, essentially by dimensional
analysis). These equations are then rewrittenby cm?relationtith
experhental or approximately computed results to yield semiempirioal
formulas for the Nusaelt numbers. More recently, experimental
tivesti~tions of natural-convection flows of liquid metals have been
made; the results of such a study on horizontal cylinders are discussed
in reference 5. None of this work on the more oomplex configurations
@elds detailed information on the velocity and temperature distribu-
tions, and it does not apply for fluids containing internal heat
sources. Further, the results predicted by these semlempirioal
formulas deviate in some oases from the existing experimental data.

Therefore, in order to answer same of the many pending questions
concerning the natural-convectim flow of various fluids in enclosures
and to obtati information on such flows of fluids captaining heat
sources, t~s phenomenm is -Iyzed herein. Partic@ oonsideratl.on
will be given to a simplified but representative ease; mmel.y, the
natural-convection flow between two long panillel plates at oonstant
temperatures oriented pmxdlel to the direotion of the generating
body force. This speaific problem not onl.yretains many d the
physioal oharaoteristicsassociated wi$hnatural-convection heat
transfer but also leads to a traotable mathematical problem.
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ANALYSIS .
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.
General Considerations

In general, the differential equations governing the laminar steady
flow of a viscous, compressible, heat-conducting fluid which is subject
to a body force are, in rectangular Cartesian tensor notation (see
reference 6),

-&q) “o (1)

\\\
(3)

P = P(P,T) (4)

II= IL(T) (5)

k = k(T) (6)

(A complete list of the symbols used herein is presented in appendix A.)
Equations (l), (2), and (3) express, respectively, the cmservation of
mass, momentum, and energy; eq~tion (4) represents a thermodynamic
equation of state; and equations (5) and (6) represent the viscosity-
temperature and thermal-conductivity - temperature variations. If w
and k are assumed to be constant and if the coefficient of
volumetric expansion P is introduced in the body force term (see
appendix B), equations (2) and (3) becme

and

._.—_ ______ —— -——---———— — —
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where ~1)

condition

&a

=P-PB, e=

usually taken

NACA TN 2863

a, .

T - T~, and the subscript s denotes a reference

to be the hydrostatic condition. w

manner similar to that
(neglectingheat sources) can be

of reference 7, equations (2a) and (3a)
written in dimensionless form as

and

(3b)

by letting Ui = Uifi, e* = G/ew, q = ~/d and p = I?/p@. Here,

~ should denote a unique velocity which cheracterizee the flow, and
in the case of forced-convection flows this is taken to be the pre-
scribed reference velocity U- (as for example, the free-stream
velocity). From equations (2b) and (3b) it can then be seen that the
solutions of the dynamic and thermodynamic problems for the forced-
convection flow (at velocity U.), taking tito account also the baly
force action, are given in terms of four
Grashof number Grj the Reynolds nuniber
and the dimensi(m.lesstemperature number
defined

d~.
Cp% - %3)

and it is argued that if Um2 -=-=~(~ -

Pammeters; namely, the
Re,

@.

= 2

T8)

the Tr&dtl n~ber I&,
The parameter @ is

Qa

~

or, equivalently, if

ga< <gw, then the compression mrk and frictional dissipation terms

(the last two terms, respectively, in equation (3b)) can be neglected
with respect to the conduction and convection. For the case of pure
natural-convection flows, there exists no unique prescribed character-
istic velocity U., so that the parameter @ as well as the Reynolds
number Re- beconws meaningless. Equations (l), (2a), and (3a) still
hold, but now @tead of using U= as a reference velocity to obtain
dimensionless equations, some group of the physical quantities (such
as

‘x’ ‘WJ
and P) which are directly connected with the natural-

convection phenomenon must be utilized. Such a group was found in
references 1, 2, and 8 to be

~= f#3#

v
(7)

,

-—— —-
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(For convenience,fX is here taken to be the negative of the X-component

of the lody force per tit mass.) Hence, with this expression for ~
as the reference velocity, the dimensionless forms of the momentum and
ener~ equations for the case of natural-convection flow are

and

(3C)
pfxa

Setting Gr — = F, equation (3c) can be written as
??

(xi)

The new dimensionless group ~f@/cp which appeers here was first

encountered in the analysis of reference 9. It does not appear explicitly
in that reference, however, since for the particular case considered it
was approximated by Pgd/l? by means of the state equation for a gas,
and this last expression was negligibly small. This group was also
obtained in reference 5 by a formal dimensional analysis, but its
physical significance and function were not discussed. By comparison
of equations” and (3d) with (2b) and (3b) it uanbe seen that for
the case of pure natural-convection flow the Grashof nwiber is
analogous to the Reynolds numler for forced flows and the factor %
is analog~us to the dimensionless temperature nuniber ~. In fact,
& and K are, respectively, simply Re and flbasedoni?as
given in equation (7). Therefore, for pure natural-convection flows
the influence of the compressionwork and frictional dissipati~n terms
in the ener~ equation should be detemnined by the parameter K and
not by G . Previously, the effects of the compression wcmk and
frictional heating had been neglected in the natural-convection
phenomenon on the basis of qualitative arguments showing that @ was
always small; in order to do so a guess had to be made of the value of
the reference velocity. Since it has here been demonstrated that ~,
and not 0, is critical in determining the influence of the compression
work and fictional heating on the flow and heat transfer in the ptiely
natural-convectionprocess, it must be detemined whether in actual

—.—.____ -_—___ __.___— .._ .__. — —-
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practice k is always
thent of course, there
this respect. However,
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negligibly small. lY F is always very small,
would be no need to extend the previous work in
calculations show that even under relatively

mild conditions,moderately large values of ~ are possible. When-it
is further realized that the three prime physical factors in the
natural-convectionprocess, fx, ~, and 19w,appear in the numerator of

the expression for ~ and that in the more recent applications these
could easily be many times those values usually associated with this
mode of heat transfer (for e-pie, fx could be as much as 105 g in a

centrifu@ field, and ~ and ~ also could be much larger in atomic

ener~ applications), it becomes clear that h many practical cases the
compressionwork and Frictional heating till influence the natural-
convection flow and heat transfer.

An interesting and different characteristic of the natural-
convection phenomenon becomes evident if the compression work and
frictimal heating are taken into consideration. k this case, for
emmp le,
heat and
increase

the frictional heating is added to the physically imp&ed
should act as a heat source
the flow velocities.

Specific

in the fluid &d, hence,-tend to

Problem

To solve the system of equations governing the natural-convection
flow and heat transfer would a+ best be a f~dable task because of
the nonlinearity of the equations and because of the interrelation
of the equations of motion with the energy qquation. The consideration
of the compression work and frictional heating terms h the ener~
equation makes the problem still more complicated. Therefore, in order
to obtain equations which are tractable mathematically, it is necessary
to make some simplifying assumptions. In this report, therefore,
consideration is given to a stiplified confi~ation which leads to
less complicated equations but which, nevertheless, retaims the
essential physical behavior of the natural-convection process. In
this way detailed velocity and temperature distributions can be
computed, and the effects of heat sources and of frictional heat can
be studied.

Fully developed flow betYTeenlong parallel plates with constant
wall temperature. - The simplified configurationto be studied is the
fully developed leminar natural-convection flow between bTo 10U?

parallel plane surfaces or plates which are oriented in the dir~ction ~
of the generating body force (see fig. 1) and which are open at the
ends to the ambient fluid. The surface temperatures are constant, but
one surface may be at a different temperature fhm the other. For
such a configuration it is assumed that the velocity, as in the more

.

.. .—.—._.— —-.—-— .—._. —.
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familiar Poiseuille flow case, and temperature depend only on the trans-
verse coordinate Y. The simultaneous assumption of these two conditions
Implies that there is always a net heat f’lowto the walls and also that
tbe transverse velocity component V vanishes identically. Under these
conditions equation .(1)is identically satisfied, and the system of
equations (2a) and (3a) becomes

(8)

(9)

(lo)

where now the more familier notation U1 = U, U2 = V, Xl = X and

X2 = Y is used. The product ~p in the coefficient pPfX/w in

equation (8) can he written as IV for fluids, as is discussed in
appendix B. For gases, the density p can always be cambtied with
the absolute viscosity v to form the kinematic viscosity v, and
v should be evaluated at some convenient
point (as, for example, at the average of

By equation (9), P= is seen to be a

Since U and (3 have been assumed to be
is evident from equation (8) that dPD/dX

and representative reference
the wall temperatures).

function of X alone.

functions of Y alme, it
must be a constant. Hence

the pressure gradient dP/dX inside the channel differs fran the
hydrostatic pressure gradient by at most a constant, since

~ ‘s ‘D ‘S + ~mtmt

\ ZY=T+ZZ-=F

However, the pressure difference required”to accelerate the fluid
from the hydrostatic to the fully developed condition and the pressure
difference to decelerate it back to the hydrostatic conditim must be
finite. Therefore; since ‘thechannel is assumed very
pressure gradient inside the channel becomes equal to
pressure gradient, and equation (8) may be written as

d2U ~pfx
—eGo

z ‘H

long, the
the hydrostatic

(8a)

-. . .— . .— . .———- .- -———————. -— —-— -—— . .—
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At this point several interesting observations can be made concemdng
equations (*) and (10). IUrst of all, in equation (8a) as in the forced
Poiseuille flow equation, the inertia terms (left side of equation (3c))
vanish, but now the driving (buoyancy)term (second term h equation (8a))
is a function of the transverse coordinate;whereas in forced

~Poiseuille flow the driving term (pressure gradient is a function of
the longitudinal coordinate.

IY the frictional heating term (second in equation (7)) is neglected,
the energy equation is independent of the velocity distribution, but the
equation of motion, which yi=dds the velocity, is dependent on the tempera-
ture. This state of affairs is the opposite of that ”occurringin the
forced-convection Poiseuille flow. Also, the convection and compression
work terms in the energy equation (3a) now vanish. Although these last
effects are eliminated, the solution of this simplified problem should
not only yield practical results for the natural-convection flows in
+all-narrow channels but should also show the effect of heat sources
in the fluid (last term in equation (10)) and the effect of tractional
heating (secondterm in equation (10)) on the natural-convection
process.

The boundary conditions associated with this problem are as
follow : the fluid must adhere to the walls of the channel (the no-slip
condition of viscous fluids) or, mathematically,

and the temperature
temperature, or

and

L9t

u

u(o) =U(d) =0

of the fluid at the plate must

e(o) =qo -Ta= ewo

e(d) = %1 - Ta= mewo ~ 19W1

rCP*TT()

= (ti/@U = (k/fxPpd2)u= mu

equal the plate

Y=fl

and
eWo

- e = (kp/fx2p2p2d4)~S=Z

.

.

0
&
N

.

.

,,

. . —.——---.—c — ——— —



2V NACA TN 2863 9

<

.

,
.

“

Equations (8a) and (10) become

u~l+’c=() (n)

‘Vl+(uqz+m=o (12)

$f@
where u = Qd2/k~o and K = Pr ~ = Pr Gr — and the primes denote

CP
differentiationwith respect to y.

The boundary conditions are

u(o) = u(1) = o

‘c(O)=K

and

T(l) =mK

where m = 8w1/~ .
0

It is interesting that in this particular problem it is necessary
to have a priori information on three temperatures (T~, ~o, and

essentially

bution, and
temperat e

Tand (12 to

~1) in order to determine the actual temperature diatri-

that these appear explicitly only as the ratio of two
differences in the,ar@ysis. Combination of equations (11)
eliminate the dependent variable ‘c yields

Uiv .-:(U’)2- m=o ~ (13)

with the boundary conditions
.

< u(o) = u(1) = o

Ut?(()) = -K (14)
and

..
u“”(l) = “-- ‘ “

For convenience, the heat-source distribution is taken to be
uniform, so that Q and hence a are constants. The methd of
solution to be described is,@.no way depe@@upon.this restriction;
that is, Q and a ‘could._befictions of the indep&d&t variable,
and the same methcd could be applied in principle. In order to solve
the given loundary value problem (equations (M) and-(14)) a methd

_.—_—.._.-—.- ..._ _ ____ .—.—— — —.— —– —.—.—. -
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.

of successive approximations is employed. The equation for this technique
can be written .

%iT- [U+r-l)]z - a = o (15)

where r= 0,1, e.. denotes the order of the approximation and where
UI

-1
s O by definition. It should be noted that r = O yields the sane

equation as would apply when the frictional heating is neglected. By
elementary quadrature the zeroth-order (r . O) approxim&tion uo is o’

&(
4%

N
tiO=K~l& (16)

=

where

al=& (4m+U+8)

( ; )a3=- m+ —-l

a4=a

and from equation (n)

4 ai
‘o = -Uo” =

(i-2)
-K~-m= (17)

The next higher appradmatton

q = U.

(consideringnow frictional heating) is

* E%ti‘~ld
(18)

.

.

..

where

al = 350? + 320ma + 328m + 792m6 + 1392m + 840

=2.0

=3 = -2(51a? •t-*a -r-

z~ = 105(4m + a i-8)2

564a.+ 100ti2 + 2352m + 1680)

,.,

. -—-.—— ——— -——-.—————
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.

I-1

X5 = -1008(4m + a+ 8)

,-

~6 = -84(u? +6ma+6a+&02. +ti - 64)

.

“

#cL+72m- 72)

- 28a +“12m2 - 24m + 12)

).
1

(19)

Equations (16) and (17) yield the velocity and temperature distributions,
neglecting the frictional heating; and equations (18) and (19) hold for
small hut sigmMicant values of K and, hence, show the etfect of con-
sidering the frictional heating to a first approximation. To obtain
solutions for somewhat lsrger K, it would be necessary to continue
with the iterative procedure described previously to obtain the
higher-order approximations. Such a scheme l)ecomesextremely tedious,
and, furthermore, the convergence of the method can be established by
comparisonwith a direct numerical soluticm of the complete boundary-
value problem (equations (13) and (14)). Some disc~sion of these
numerical results relative to the solutions given by equations (16)
to (19) will.be presented herein, and a more complete and detailed
account of the numerical results together with a dekiled account of
the numerical solution procedure used is in progress. Comparison of
these solutions obtained from equations (18) and (19), inw~ch the
frictional heating is considered to a first approximation, to the
numerical solutions, in which the frictional heating is completely
accounted for, should indicate the range of applicability and accuracy
of equations (18) and (19).

RESULTS AND DISCUSSION

Velocity and Temperature Distributions

The relations between the actual and dimensionless velocities and
temperatures as detemnined from the various transformations in the
analysis are

. .- ..—— —._—._—__— . --- ———— -—- —--- -—-—-.



12 NACA ‘TN2863

(20)

K~=% (21)
@w.

where U and i3 denote the actual, and z and u denote the dimen-
sionless quantities. For a given heat-trmsfer fluid @ cotiiguration
(as specified through K and m) and for a given heat-source intensity
(as specified throum a) the dimensionless velocity and temperature
distributions in eqtitiois (20) and (21) cam be computed fr& equa-
tions (16) to (19). These computationswill be accurate within the
limits of the methcd of solution; that is, for small K. I?or
larger K, computations of u and T ean best be determined by
direct numerical solution of equations (13) and (14). The range of
applicability of the solutions given by equaticms (16) to (19) till
discussed more fully subsequently. Representative velocity and
temperature distritmtions’we~e calculated for values of K = 0.5,
3.0, and 10.0.

The particular values of ratio of wall-temperature differences
chosen for the computations correspond to the follcn?ingintere~ing
cases: (1) m .-1, in which the arithmetic average of the wall
temperatures is equal to the temperature of the anibientfluid (th$t
is, (Twl +~o)/2 = T~); (2) m = 0, in which one wall is at the

le

m

resenoir or ambient temperature; (3) m = 1, tiwhich both walls are
at the same temperature, and, hence, the effect of the wall-temperature
difference is eliminated; and (4) m= 2, in which the wall temperatures
are unequql but both ae maintained at higher or lower temperatures
than the &mbient.

Comhinatims of K and m used in the computations and the fi~e
in which the results ae plotted are gi’venin the following table:

I
K 0.5 0.5 0.5 ().53.0 3.0 3.0 3.010.()10,0loco”10.()
Ratioofwall-temperature
differences,m -1 0 1 2 -1 0 1 2 -1 0 1 2

Velocity-profilefigure
number 2(8)2(b)2(c) 2(d) 3(a) 3(b) 3(c) 3(d) 4(a) 4(b) 4(0) 4(d)

Temperature-profile
figllre number 5(a)s(b)5(c)5(d)6(a)6(b)6(c)6(d)7(a)7(b)7(o) 7(d)

.

“

.

.

—— . . ——-
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For each K and m combination profiles were calculated for a = 0,
10, and 100 with frictional heating neglected (givenby equations (16)
and (17) and denoted by U. and To on the figures), with frictional

heating included to a first approximation (givenby equations (18)
and (19) and denoted by U1 and ~1), and, in several specific cases,

with tiictional heating completely accounted for (givenby the
numerical solution of equations (13) and (14) and denoted by u -
and ‘c).

The computed results presented herein pertain specifically to a
configurationwhereinthe ldy force is acting in the negative
X-direction and at least one wall temperature is always greater than
the ambient (that is, ~>Ts). .

Effect of different wall-temperature configurations m VzqnQ
and heat sources (a varying ‘..-Examination of typical cases in
figures 2 to 7 shows that, as expected, an increase in the heat-source
parameter a or an inaease in the walJ_-temperat&e parameter m
results in larger velocities and higher temperatures. The velocity
profiles change in such a way that the net mass through-fluw, as
represented essentially by the area under the u-curves, increases
wlthmanda from zero atm =-land a=O. The velocity
profiles become more symmetric with inmeasing a, and for a= 0,
negligible frictional heating, and m= 1, the profiles are similsr
to the Poiseuille profiles. For any given set of conditions, a
decrease in the net mass through-flow or even no net mass through-flow
can, of course, be obtained by adjusting the wall-temperature ratios
so that m takes on lsrger negative values. It can also be seen
from the temperature distributions that, as previously predicted, h
all cases considered, either heat is being transferred to both walls
or heat is fluwing from one wall out through the other. I?orthe case
of no heat sources in the fluids and neglecting frictional heat@j
the temperature distributions, as are to be expected, are just the
conduction profiles.

Effect of frictional heating. - The effect of frictional heating
can be seen in figures 2 to 7 by comparing the’curves cmputed by
neglecting frictional heating (denotedby subscript zero) with those
computed by includ~ tiictional heating as a first approximation
(denotedby subscript unity) for a ven set of conditions. Numerical

?solutions of equations (13) and (14 obtained for several specific
sets of conditions are also included (with no subscripts) for com-
parison with the approxhate.solutions. Tor K= 0.5 and all u
and m considered, the frictional heating effect is small; that is,
the U1 @ ‘1 and u and .Z curves are not appreciably differ-

ent from the U. and To curves, respectively. However, even for
.

.-— —— —— — .—.——— -. ———— .——.—



14 IIACATN 2863

values of K relatively near unity, as is here representedby the case
K= 3, there are conditions of m and a in which the frictional
heating begins to alter the results appreciably. This situation could,
depending on m and a, also occur for even lower values of K. In
fact there are many combinations of K, m, and a for which the
frictional heating beeomes important. For example, the deviation
between the solutions neglect- frictional heating (denotedby subscript
zero) and those including the frictional heating to a first approxi-
mation (denoted by subscript unity) for the case a = O
marked for K= lo~a m= 1 (see figs. 4(.c)~a 7(c)).
is more pronounced the higher the tiue of K for given
was previously stated, moderately large values of K (or
obtained under relatively mild conditions. For example,
convection flow of air under the influence of ~avity at

first become
This deviation
m and a. As
~) can be
for the natural-
room tempera-

ture, with 13w equal to 1000° R smd the Grasliofnumber equal to i07,
K is approximately12.1 (%= 16.8)j for the flow of water in a gravi-
tational field with ~ of 150° R and a Grashof number of 108, K is

approximately 26.1 (~= 3.7). I’romthe specific computations made
herein, it can be seen that for a. 10, the deviation mentioned previ-
ously first becomes a~arent for K= 3 and m = 2 (see fiGs. 3(d) and
6(d))j and for u= 100, a large difference exists for K= 3 and m = -1
(figs. 3(a) ~d 6(a)). Hence, on the basis of the computations presented
herein, it can roughly be stated that the solutions as given by equa-
tions (16) and (17) will be sufficiently accurate up to the limits
preciously stated. Beyond these limits the solutions including frictional
heating effects to a first order (equations (18) and (19)) should be used.

. It should be kept in mind, however, that more detailed computations are
necessary to define these limits more precisely.

Numerical solutions which completely include the frictional heating
effects and which are denoted by u and z without subscripts are also
presented h the figures only for the cases of (K, m, u) of (3, -1, O),
(3, 1, o), (10, -1, o), (lo, 1, o), (10, 2, o), (3, 17 lo), (3, 1, 100),
and (10, 2, 10) in order to show the relative accuracy of the U1 and

‘1 solutions. For most of these cases, these numerical solutions

coincide with the U1 and Z1 solutions; but in the higher internal-

heat-generation cases (as given by high K, m, and u), these two sets
of solutions differ (see figs. 3(c), 6(c), 4(d), and 7(d)). A signi-
ficant difference indicates that the u= and ~1 solutions, as given

by equations (18) and (19), respectivel~, are no~ sufficiently accurate.
For the range of vslluesof K, m, and a computed here, it appears
that equations (18) and (19) could well be used for a. O for all
K and m in this range, for a= 10upto values of K=lOand m=2
(figs. 4(d) and 7(d)), and for a= 100up to K. 3 and m. 1
(figs. 3(C) ana 6(c)). Beyond these limits, equations (18) and (19)
lose their accuracy, and the complete numerical solutions of equations (13)
and (14) should be used.

————
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The consideration of fictional heating not only changes the shape
of the temperature profiles but also leads to flows with increased
velocities, as was expected. This change of temperature profi10
appreciably.alters the temperature gmdients at the wells and hence
the heat transfer.

In addition to these trends, the consideration of frictional heating
leads to other interesting results. These results, which were obtained
in computing the numerical solutims which completely take i@o account \
the fricticmal effects, are that two solutions exist for a giwen set
of conditions and that there exists a critical set of conditionsbeyond
which no aolutiona exist. Physically, the presence of’two soluticma
predicts the existence of two heat-transfer and flow states for a give~
set of conditions,which appears to be a situation analogous to that ‘
in a Iaval nozzle. The existence of critical conditims appears to be
similar to the thermal-choldng phenomenon. One of the two fluw states
mentioned (the one encountered first physically) corresponds, as is
seen in the figures, to the U1 and %1 solutfons (orJ more accurately,

the u and z solutions]; but the other> computed here ofiy for the
case of K = 10, m = 2, and m = O, denoted by the curves labeled u

and T(2)

(2)

on figures 4(d) and 7(d), represents velocities and tempera-
tures many times larger than the others at the same conditions. These
results are being further investigated.

Actual values of the velocities and temperatures can be computed
from equations (20) and (21) and figures 2 to 7. Since so many factors
appear in thosa exprebsionsl it is clear that there is considerable
freedom in choosing the fluid and the physical conditions to obtain
almost any given flow and heat transfer. For e-le, if @ = ~06,

f= = 6g, and I%. = 100° R for air at s~ard room conditi~

(Ta .500° R), a maximum velocity..pf382 feet per second and a maximum

temperature of almoat 700° Rwould be obtained with bath walls at’the
same temperature (that isz m = 1). These conditions could very easily
be obtained in an etiremely mild centrifugal force field.

For such computations to have quantitative Significance it should
be kept in mind that this analysis pertains only to lam~nar fluwa. It
is not possible to state under what conditions the transition from
laminar to turbulent flow will occur, because no general stability
theory exists far natural-convectionfhys. The onQ available natural- ‘
convection stability informaticm 2s the experimental result indicated
in reference 10 that transition on a single vertical plate occurs at .s
Grashof number of approximately 109. (All values of & used in the.
numerical examplea herein were less than 109.) There 2s, in fact,
relatively little general Stabflity informatio~ fqr forced-convection
channel flow wfth heat transfer, so that it is not even possible to
obtain a rough transition crfterion by relating the present problem to
an equivalent forced-convection problem.

.—. —————. ——————
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Although computations are presented herein only for a particular
configuration,the analysis itself and the approxhate solutions given
by equations (16) to (19) are in no way limited to a single configura-
tion. A change only in the lody force direction (sign)merely alters
the flow direction; that is, the sign of the velocity changes, or, in
mathematical terminology, the velocity is an odd function of the baiy
force. If there are no heat sources in the fluid and the effects of
frictional heating are negligible, a chmge in the surface thermal
condition (say, from ,~>Ta to ~<Ta) would also result in a

change in flow’direction. However, when either heat sources are
present or frictional heating is not negligible, or both, the anti-
symetry with respect to i3w is disrupted. For the case ~>Ta, the

internal heat (due to heat sources or friction) increases the flow in
a given direction as is shown in figures 2 to 4; but for Tlr<!l?8,this

heat tends to ret- the flow in a given dtiection and, if large enough,
can change the flow direction. These effects can be seen in figure 8,
where the velocity distributions are presented for a representative
case (K = 10, m = 2, a= 0, 10, 100) where ~cTs. The associated

temperature profiles are given in figure 9. Itrictionalheating is
appreciable for a . 0 ud lm but not for a . 10j ~d &l_thoughfor
a . 100 the flow is again in the same direction as for the same case
for Tw >Ts (fig. 4(d)), the velocities-are smaller for Tw< Ts.

Unfortunately, there are no experimental results available with
which to compare the results predicted herein. The experiments of
Elenbaas (reference2) were made with short plates; and, consequently,
there tire variations of.velocity and temperature profiles ~tiththe
longitudinal distance. Such variations were not considered in this
analysis.

Heat Tfmnsfer

The heat-transfer coefficients for the nat&al-convection process
considered he”reM be expressed in terms of Nusselt numibers. For the
case where the walls are not at the s-temperature (that is, m+ 1),

,’

where the double subscript O,d sigr&ies that the temperature gradient
is to be evaluated ateither Y= O orY = d, depending on which wall
is under consideraticm. By means of the various tz%msformationa in the
analysis this’expression can be written’- -’

., .,

,, .,

-— ——— —
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()~‘“=’+ dyO,l

By use of equation (19), the Nusselt number for

-~~ (51a2 + M&a + 564a + 100&u2

thewabat y=O is

1+235Zm + 1680)

and for the wall at y = 1

.’* (51”2 1
+ 56-+ 444+ 1680m2 + 2352” + 1008)

The Nusselt numbers were computed from these expressions over a range of
values of K for m= -1, 0, and 2, and a= O, 10, and 100, and are
presented In figures 10 and 11. ~ general, the Nusselt mmibers inorease
with increasing K, m, and a. Wmrparison of figures 10 and 11 shows that
,for m= -1 the Nusselt numbers for the wall at y = 1 are larger than
for the wall at y = O. However, as m increases to 2, this result is
reversed.

When the walls =e at the same temperature (m = 1) the Nusselt
nuuibercan be written as

and from the

.

()dT d
‘u= EOz

.
transformations h the analysis,

()NU=L!E
Kdyo

.

this equatim becomes

Again from equation (19)

Nu =
[ 1;+- (51a? +1008a +5040)

The Nusselt numbers computed for this ease are presented in figure 12.

.

-————— —-—.——
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An analysis of the natural-convectim phenomenon shows that the
flow and heat transfer not mly are functians of the Yrandtl and
Grashof numbers_but also depend upon a new dimensionless factor, ~.
For values of K which are not negligible, the frictional heating and
compression work may appreciably alter the results. Considerationwas
given to the ~icxibxr simplified case of the fully developed natural-
convecticm flow of fluids with and without heat sources between two long
parallel surfaces oriented h the dtiection paallel to the generating
body force. These surfaces were taken to have constant but not
necessarily equal temperatures. The velocity and temperature aidfibU-
tions for this special case were iletemined, @ it was observed that
increasing the wall-temperature ratio ticreasetlthe flow velocities,
the net mass through-flow, and the temperatures. The effect of the
heat sources was also found to increase velocities, temperatures, and
mass flows. The frictional heating appreciably altered the velocity
and temperature profiles in some cases, showing that the velocities
were increased and the heat transfer at the walls was greatly chmged
by this ”effect. Comideration of the frictional heating also led to
the predictim of two flow and heat-transfer states for a given set of
conditions =d to a critical set of conditions beyond which no solutions
existed. These last two results are being mare completely Investigated.

Iawis Flight Propulsion Laboratory
National Advisory Committee for Aeronautics

Cleveland, Ohio, October 6, 1952
.

.
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APPENDE A

SIM601S

The following notation is used in this report:

19

coefficients in successive approximation

specific heat at constant pressure

specific heat at constant volume

solutions

c~acteristic length (specificallydistance between plates)

components of bdy force per unit mass, i = 1, 2, 3, . . .

negative of X-component

pfxe&3
Grashof number, “ .

gravitational
gravity)

heat-transfer

dimensionless

dimensionless

v’

force per

of bcdy force per unit mass

Unit mass (or acceleration due to

coefficient

pfxa
paameter, Pr C& —

%

parameter, K@

thermal-conductivitycoefficient

ratio of wall-temperatu”redifferences, ~ -
1 %/%0 - Ts

a constant

Nusselt nwiber

pressure

P - Pa

~ost*tic pressure. , -: , - . ,

—.-————.—. .—— .—.. —— _ —. .—z
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Pr

P

Q

Re

T

u

6

u~

u=

u

Ui

v

%

%

Y

Y

a

P

7

@

e

(
e*

Prandt1 number

dimensionless pressure

heat added by heat sourcee

Reynolds nuriber

temperature

longitudinal velocity component

characteristicreference velocity

NACATN 2863
.

velocity components,

prescribed reference

i=l,2,3, . . .

velocity in forced-convection flow

dinmnsionless longitudinal velocity component

dimensionless velocity components, i = 1, 2, 3, . . .

transverse velocity component

rectangular Cartesian coordinates, i . 1, 2, 3, . . .

dtinsianless

coordinate

dimensionless

dtiensionlees

coordinates, i s 1, 2, 3, . . .

coordinate

heat-source

coefficient of volumetric

ratio of specific heats

dimensionless

T - Ts

dimensionless

temperature

temperature

parameter, Qd2/k~

[%21alp
expansion, P

P

nuniber,um2/cpew

difference, (3/~

— --.—
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Y absolute viscosity coefficient

v kinematic viscosity coefficient

P density

T dimensionless temperature

Sulwripts :

a denotes adiabatic condition

i, j rectangular Cartesian’tensorand swmnation subscripts

. r successive approximation subscript

s denotes a reference condition (usuallytaken as the
hydrostatic conditim) - -

w denotes wall conditions

W() denotes condition at y

W1 denotes condition at y

Superscripts:

(2) denotes second flow and

=0’

=1

heat-transfer

21

state

———————. _._. _ .__. __ —— ._____ —— .
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APPENDIX B

DERIVATION OF BUOYANCY TERM

NACA TN 2863

.

It is often convenient h natural-confection studies to express
the body force term (first term on right side of equation (2)) as a
buoyancy term. To this end, the case is considered in winch the sur-
face (specificallyhere, the channel) and the fluid are at the same
temperate and there is no flow. Equation (2) then becomes

&
PHfi-+o (Bl)

where the subscript s in.dicateqthe hydrostatic condition, and
equation (Bl) then expresses the fact that under this condition the
body force is in equilibrium with the hydrostatic pressure gradient.
This equilibrium is, of course, upset if there is a temperature
variation h the flow field, and the unbalanced force, which is the
buoyancy force, causes a flowto be established. Ih order to intro-
duce the buoyancy term into the equation, the body force and pressure
terms in equation (2)

can be written
@s @D

PSfi + (P - Ps)fi ---~

where PD = P - Ps.

Hence, in view of equation (Bl), these terms become

(P -Ps)fi -~ (B2)

The pressure gradient in the preceding expression appe=s in just that
form in equation (2a), but now.the buoyancy term is to be expreseed
in terms of a temperature difference. It is first assumed that the
density is a function of temperature alone, so that equation (4) can
be written

P = P(T) (B3)

In the case of a liquid, this assumption is evident; whereas, in the
case of a gas, it implies that the pressure changes are small as com-
pared with the absolute pressure. If the coefficient of volumetric
expansion ~ is intrduced, equation (B3) can be written

.

— —.
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dp = - ~pdT (B4)

The writing of the density difference in expression (B2) in terms of
a temperature difference can now be effected in one of several ways,
depending on the specific prollem.

Most of the theoretical work’done to date applies only for the case
of small temperature differences. Hence, for that case the differentials
in equaticm (B4) are replaced by differences

P =~ (P-PS)
p ‘~

to yield

The buoyancy term in equatibn (B2) then becomes

(P-ps)fi = - PfiB(T-T8) (B5)

as it appears in equation (2a).

If the analysis is not to le limited to the case of mall tempera-
ture differences, equation (B5) can be obtained in either of the
following ways, depending on whether the fluid is a liquid or a gas.
For liquids, it is assumed that pp = IV where IV is a constant. A
numerical check of this assumption shows that it is reasonable under
commonly encountered conditions for most fluids; in particular, if
the constant is evaluated at the ambient condition, the variation of

W over a ~ge raw of temperature is small. (For unusually large
temperature ranges N could be evaluated at some other appropriate
condition.) As a result of this assumption a linear density-
temperature variation is obtained from equation (B4), and thenby
direct substitution equation (B5) is obtained. For gases, the
equation of state is

P = PRT (B6)

where R is the gas constant.

Substitution into the buoyancy term yields

It

is

. .

‘[ 1

‘s T
(P-PE)f~ = ~ 1- ~ ~ fi

need now only be assumed that the difference between P and Ps
everywhere small; therefore

(P-Ps)fi = g (Ts-T) (B7)
a

.— - —.— —_ . _ —.——— -—— .—— —— .. -—..
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By definition, p = l/T for gases, so that the final desired form

(P-p~)fi = - Pfip*(T-T~)

2863

is obtained. ~ this case, p is evaluated at the hydrostatic condi-
tion. An equivalent form could also be obtained where the density
would he evaluated

1.

2.

3.

4.

5.

6.
.

7.

8.

Ostrach, Simon:
Heat !Ikansfer

at that condition and p could be variable.

to
RE?lmENcEs N

Anhalyflis of Ialinar Free-Convection Flow and
About a Flat El-ateParallel to the Direction of

the Generating Body Force. IIACATN 263~, 1952.

Elenbaas, W.: Heat Dissipation of Parallel Plates by lkreeConvection.
Physics, vol. IX, no. 1, Ja.nuari1942, pp. 1-28.

131enbaaf3,W.: The Dissipation of Heat by Eree Convection - The
Inner Surface of Vertical Tubes of Different Shapes of Cross-
Section. Physics, vol. IX, no. 8, Sept. 1942, pp. 865-874.

Elenbaas, W.: Dissipation of Heat b@?ree Convection. Philips
Res. Rep., pt. I, ?01. 3, 1948, PI. 338-360; pt. II, VO1. 3,
pp. 450-465.

=, Sewow c., Bonilla, Charles F., and lBmlich, Stanley W.:
Natural Convection Processes. I - Heat -sfer to Liquid Metals
and Non-Metals at Horizontal Cylinders. Preprints of papers .
for Heat Transfer Symposium, Atlantic City (New Jersey), by Am.
Inst. Chem. Eng., Dec. 5, 1951, pp. 55-76.

Lewis, J. A.: Boundary Layer In Compressible Fluid. Monograph V,
Tech. Rep. No. F-TR-1179-ND(GDAM A-9-MT), Air Materiel Camnand
(Dayton, Ohio), Feb. 1948. (AnalysisDiv., Intelligence Dept.
Contract W33-038-ac-15004 (16351)with Brown Univ.)

Schlichting, Herman: &enzschicht-Theorie. Verhg und Druck G.
Braun, I@rLnnihe, 1951, pp. 231-234.

Schmidt, Ernst und Beckmmnj Wilhelm: Das !lemperatur- @
G&chwindigkei\sfeld vor einer W&me abgebenden senkrechten
Platte bei naturlicher Konvektion. Tech. Mech. u. Thermcd=,
Bd. 1, Nr. 10, Okt. 1930, S. 341-349; cont., Bd. 1, Nr. 11,
NOV. 1930, S. 391-406.

.—— — .— —.— —.——..



4V NACA TN 2863 25

9. Ostrach, S5mon: A Boundary Layer ~oblem in the Theory of IYee
Convection. Doctoral Thesis, Brown Univ., Aug. 1950.

10. Eckert, E. R. G., and Jackson, Thomas W.: Analysis of Turbulent
I&ee-Con’vectionBoundary layer on Flat Plate. NACA Rep. 10U5, 1951.
(SupersedesNACA TN 2207.)

-——— -.. -— . ..— . —— –— ——. — .— —



26 NACA TN 2863 ,’

Two -

Section of fully
developed flow

.

.

Figure 1. - Schematic sketch of simplified configuration.
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Figuxe 12. - IWsselt number for walls at same temperature (m = 1).
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